Absorbing Boundary Conditions for the Two-Dimensional Schrödinger Equation with an Exterior Potential. Part I: Construction and a priori Estimates

نویسندگان

  • Xavier Antoine
  • Christophe Besse
  • Pauline Klein
چکیده

The aim of this paper is to construct some classes of absorbing boundary conditions for the two-dimensional Schrödinger equation with a time and space varying exterior potential and for general convex smooth boundaries. The construction is based on asymptotics of the inhomogeneous pseudodifferential operators defining the related Dirichlet-to-Neumann operator. Furthermore, a priori estimates are developed for the truncated problems with various increasing order boundary conditions. The effective numerical approximation will be treated in a second paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Open boundary conditions and computational schemes for Schrödinger equations with general potentials and nonlinearities

This paper addresses the construction of absorbing boundary conditions for the one-dimensional Schrödinger equation with a general variable repulsive potential or with a cubic nonlinearity. Semi-discrete time schemes, based on Crank-Nicolson approximations, are built for the associated initial boundary value problems. Finally, some numerical simulations give a comparison of the various absorbin...

متن کامل

Absorbing boundary conditions for solving stationary Schrödinger equations

Using pseudodifferential calculus and factorization theorems we construct a hierarchy of novel absorbing boundary conditions (ABCs) for the stationary Schrödinger equation with general (linear and nonlinear) exterior potential V (x). Doing so, we generalize the well-known quantum transmitting boundary condition of Lent and Kirkner to the case of space-dependent potential. Here, we present a bri...

متن کامل

Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linea...

متن کامل

A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients

This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...

متن کامل

Analytical Solution for Two-Dimensional Coupled Thermoelastodynamics in a Cylinder

An infinitely long hollow cylinder containing isotropic linear elastic material is considered under the effect of arbitrary boundary stress and thermal condition. The two-dimensional coupled thermoelastodynamic PDEs are specified based on equations of motion and energy equation, which are uncoupled using Nowacki potential functions. The Laplace integral transform and Bessel-Fourier series are u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011